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The perils of premature evaluation: reassessing the application of 
Benford’s Law to the USA’s COVID-19 data 

Ravi Dutta-Powell1 

Abstract 

This paper reviews earlier applications of Benford’s Law to the COVID-19 data in the United 
States that claimed these data’s non-conformity with Benford's Law, and uses later and more 
granular data to demonstrate that this was likely due to the earlier data being unsuitable for 
such applications. It also demonstrates that the same dataset, analyzed in different ways, can 
show vastly different levels of conformity with Benford’s Law. Specifically, most US states 
show high degrees of conformity for the COVID-19 cases and cumulative deaths when the 
Robust Order of Magnitude (ROM) is over 3 and data at the county level is used to analyze 
state outcomes. Conversely, when the county data is aggregated to the state level and 
analyzed (i.e. case totals for all counties are summed to create a single state figure for each 
day of the pandemic), every state shows non-conformity. Only new deaths showed the 
reverse pattern - this is likely because new deaths at the county level do not span sufficient 
orders of magnitude, and aggregation to the state level overcomes this. This suggests that 
some instances of non-conformity with Benford’s Law in the literature may be caused by its 
applications to inappropriate datasets or methodological issues 
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1.  Introduction 

Since 2020, the COVID-19 pandemic has impacted nearly every aspect of human 
existence, with over three quarters of a billion cases and over 7 million deaths reported 
to the World Health Organisation (World Health Organisation, 2024). COVID-19 data 
is key for understanding the pandemic, both in terms of measuring its impact but also 
in terms of developing strategies to mitigate its spread. However, since the early days of 
the pandemic, questions have been raised with respect to the quality of the data that is 
being reported (Campolieti, 2022; Sambridge & Jackson, 2020). There have been 
suggestions of undercounting and misreporting of data, which has persisted through to 
the present day (Neumayer & Plümper, 2022). One common tool used to identify 
potential anomalies is Benford’s Law (Benford, 1938; Nigrini, 2012), which posits that 
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the first digits of a sufficiently large and naturally generated dataset will conform to  
a particular frequency. 

Benford’s Law has previously been applied to the H1N1 influenza epidemic (Idrovo 
et al., 2011), and has seen renewed interest during the COVID-19 pandemic. Early 
analysis using Benford’s Law yielded mixed results – for example, some analysis 
suggested broad conformity (Sambridge & Jackson, 2020), whilst others highlighted 
nonconformity, but noted this was consistent across a range of countries, and did not 
necessarily suggest data manipulation (Koch & Okamura, 2020). Farhadi (2021) 
conducted an analysis  covering a period up to September 2020, and found that only 
a minority of countries adhered well to Benford’s Law, whilst Isea (2020) found that 
Italy, Portugal, Netherlands, United Kingdom, Denmark, Belgium and Chile all did not 
conform to Benford’s Law based on data up until April 2020. Campolieti (2022) found 
that nearly every US state up until June 2020, as well as New York City and the District 
of Columbia, deviated substantially from Benford’s Law with respect to new daily cases, 
although as will be demonstrated this is likely due to the data not providing 
a sufficiently large sample size and not covering sufficient orders of magnitude – two 
key prerequisites for conformity with Benford’s Law. Similarly, early data for countries 
in the European Union found a wide variance in conformity, with the perhaps 
counterintuitive result that countries with higher vaccination rates saw deviations from 
Benford’s law (Kolias, 2022). Neumayer and Plumper (2022) found that autocratic 
regimes appear to have lower COVID-19 mortality rates on the surface, but in fact an 
analysis of excess mortality suggests that this is largely due to data manipulation.  

Later work has shown more widespread conformity, as more data has emerged. 
Farhadi and Lahooti (2021) showed that as time had progressed, more countries 
showed greater conformity to Benford’s Law, and two years in most countries showed 
conformity with Benford’s Law (Farhadi & Lahooti, 2022a). Similarly, Campanelli 
(2023) found that a majority of countries showed conformity with Benford’s Law when 
using the Euclidean Distance statistic, with only a minority showing significant non-
conformity. Others have shown that conformity with Benford’s Law is often positively 
correlated with indices of development (Balashov et al., 2021), or with indices of 
democratic freedom (Kilani, 2021). In the US, research has suggested that partisan bias 
may have led to data manipulation and misreporting of data at the county level (Eutsler 
et al., 2023).  

In this paper, we review data for the United States of America (henceforth the US), 
covering the full period of the pandemic (January 2020 – March 2024), and revisit 
previous analyses. Section 2 below outlines the data sources used and the methodology, 
where we identify the key requirements of Benford’s Law and appropriate measures. 
Section 3 covers how this approach is then applied to the various sources of US data, 
where we identify potential shortcomings of previous applications. We also demon-
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strate multiple ways of analyzing the same dataset using Benford’s Law, and demon-
strate how different approaches can lead to radically different results. Section 4 provides 
a discussion of the results and our conclusions.  

2. Data and methods 

This paper uses two datasets to assess cases and deaths due to COVID-19 – the 
Centre for Disease Control’s (CDC) dataset on daily cases and deaths at a state level, 
and the New York Times (NYT) COVID-19 cases and deaths tracker, available at 
https://raw.githubusercontent.com/nytimes/covid-19-data/master/us-counties.csv. 
CDC data for the period 6 March 2020 to 5 August 2020 was originally used by 
Campolieti (2022), and a more recent update of the data has also been included. The 
New York Times data covers slightly over three years, and has been used by several 
authors more recently (Eutsler et al., 2023; Rocha Filho et al., 2023). The datasets differ 
in terms of their coverage and figures – the CDC has its own collection methods, 
provides only state level data, and provides data on new cases and deaths, whilst the 
New York Times sources data directly from states and counties, provides county level 
data, and provides the cumulative tally of cases and deaths. All data and analysis code 
is available at https://osf.io/j2s9d/.  

One potential shortcoming of cumulative data, particularly with respect to the 
spread of an infectious disease, is that the data can have “plateaus” where there are few 
new deaths or cases. The cumulative total can then be “stuck” in a particular numerical 
range, which may lead to certain leading digits being overrepresented and thus lead to 
nonconformity with Benford’s Law. An alternative to cumulative data is thus to 
generate daily changes, which may show greater conformity (daily change data can 
easily be calculated from cumulative data, and vice-versa).  Copies of the datasets used, 
and all analysis code, are available at https://osf.io/592bu/. 

To assess whether data complies with Benford’s Law, there are several criteria that 
must be met: the data should have a large sample size, cover several orders of 
magnitude, have a positively skewed distribution, and be the result of some natural or 
semi-random process (Goodman, 2016). The first two criteria are particularly notable, 
as whilst there is agreement on the overall principles, there are a range of definitions 
for acceptable thresholds. A common threshold for minimum sample size of 1,000 is 
often cited (Farhadi, 2021; Nigrini, 2012), but others have suggested lower thresholds 
of 500 (Cerqueti & Provenzano, 2023). Regardless, it is likely that there is no hard and 
fast rule, and that some smaller samples will show conformity whilst some other, larger 
samples will not. Similarly, there is no definitive answer for how many orders of 
magnitude (OOM) a dataset must span to ensure compliance, although it is generally 
agreed that there should be at least 3 (Farhadi & Lahooti, 2022b; Fewster, 2009; 
Kossovsky, 2021). Notably, Kossovsky (2021) suggests using the “Robust Order of 
Magnitude” (ROM), which has the advantage of excluding any outliers, and requiring 
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the ROM to exceed at least 3 to deem a dataset suitable for Benford analysis (though 
it may be possible to observe conformity at values below 3). The ROM is defined as:  

ROM = 𝐿𝑜𝑔ଵ଴ሺ𝑃ଽଽ% / 𝑃ଵ%ሻ 

where P99% and P1% represent the 99th percentile and 1st percentile of the data, 
respectively.  

There are a range of methods for assessing compliance with Benford’s Law, but 
research has identified issues with some. For example, some research has used Pearson’s 
𝑥2 test as a prominent method for evaluating the conformity of data with Benford’s Law 
(Campolieti, 2022). However, the 𝑥2 test is limited, in ways that are particularly 
problematic for use with data expected to conform with Benford’s Law – larger datasets 
are more likely to show conformity with Benford’s Law,  whereas the χ2 test is more 
likely to show non-conformity as the sample size increases, making it almost 
paradoxically unsuitable for evaluating conformity with Benford’s Law (Cerqueti & 
Lupi, 2023; Koch & Okamura, 2020; Kossovsky, 2021; Nigrini, 2012). Notably, the χ2 
test also typically has a minimum sample size requirement, with each potential “cell” 
(in this case, the 9 potential values for the frequency of each leading digit) required to 
have a value of 5 or more (McHugh, 2013). For a test of Benford’s Law, where there are 
9 potential cells, this implies a minimum sample size of 45. 

A more common alternative is the Mean Absolute Deviation or MAD (Kolias, 2022; 
Kossovsky, 2021; Nigrini, 2012), which is not sensitive to sample sizes, although recent 
research suggests that at very large sizes it can also have limitations (Cerqueti & Lupi, 
2023). Instead of significance testing, a series of thresholds have been to classify the 
levels of conformity: close conformity (MAD < 0.006), acceptable conformity (0.006 < 
MAD < 0.012), marginally acceptable conformity (0.012 < MAD < 0.015), and 
nonconformity (MAD > 0.015) (Nigrini, 2012). Note these are not the only thresholds 
for MAD – earlier research has used lower thresholds (Drake & Nigrini, 2000), however 
more recently the consensus in the literature has coalesced around the thresholds listed 
(see, for example, Campolieti, 2022; Cerqueti & Provenzano, 2023; Kolias, 2022, 
Kossovsky, 2021). As such, to ensure consistency with the broader literature and 
specific works cited, we used these thresholds.  MAD is defined as: 

MAD = ଵ
ଽ
∑ |𝐸𝑥 െ  𝑂𝑏𝑠|ଽ
௜ ୀ ଵ   

where Ex is the expected proportion for any given leading digit, and Obs is the actual 
observed proportion for that leading digit.  

More recently, the Sum of Squared Deviations (SSD) has emerged as a more scale-
agnostic alternative to MAD (Kossovsky, 2021). Compared to MAD, it also treats fewer, 
larger deviations from Benford’s Law more severely than several smaller deviations - 
the latter of which is much more likely to occur naturally due to random chance 
(Kossovsky, 2021). SSD is defined as  

SSD = ∑ ሺ𝐸𝑥 െ  𝑂𝑏𝑠ሻଶ  ൈ 10ସଽ
௜ ୀ ଵ      
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Hence this paper will apply both SSD and MAD, but with preference given to the 
findings of SSD, given its simplicity of not dividing deviations by the number of digits 
involved, especially in cases of a large base in a number system. Similarly, datasets will 
note whether they have sufficient sample size (𝑁 > 1,000), and have sufficient robust 
orders of magnitude (i.e. ROM > 3).  

3. Results 

3.1. Early analysis 

We first review the data on daily deaths at the state level in the US, initially analyzed 
in the early period of the COVID-19 pandemic (Campolieti, 2022) to evaluate whether 
it meets the minimum requirements for potential conformity with Benford’s Law. Table 
S1 in the supplementary materials provides a summary of each state, as well as 
Washington DC and New York City, along with brief summary statistics of the total 
sample, range, and OOM/ROM measures.  

Concerningly, none of the states even comes close to the minimum 𝑁 of 1,000 – 
every state has an 𝑁 < 150 (full details supplementary materials). In fact, 5 states have 
𝑁 < 45, making the use of 𝑥2 inappropriate. Similarly, no state has a ROM over 3 – only 
3 states exceed even a ROM of 2.5. In fact, several states have data that does not even 
cover a single order of magnitude. Thus, it is perhaps unsurprising that Campolieti 
(2022) previously found widespread nonconformity with Benford’s Law – in many 
cases, the data was such that it was not even mathematically possible for conformity to 
exist. It is noteworthy that other research around this time also found deviations from 
Benford’s Law in the US for some time periods (Koch & Okamura, 2020). 

3.2. Later data 

Subsequently, as the pandemic progressed, more data has become available. We 
now turn to an analysis of CDC data covering a longer period (until October 2022). For 
deaths, no states had a 𝑁 > 1,000 (although some came close, with over 𝑁 > 900), and 
no states had a ROM of over 3 - just three states and New York City had a ROM above 
even 2.5, making deaths likely unsuitable for Benford’s Law (see supplementary 
materials for full details).  

Similarly, no state had cases where 𝑁 > 1,000, but 22 had a ROM of over 3. Table 1 
shows a summary of the results, with full results for all states in the supplementary 
materials. For states with a ROM over 3, 12 showed nonconformity on MAD, but just 
two of them showed nonconformity on SSD. For the 30 states with a ROM below 3, the 
results were different – 5 states showed nonconformity on SSD and 18 states showed 
nonconformity on MAD. Of note, states that showed nonconformity on SSD were 
a subset of those who showed nonconformity on MAD.  
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Table 1:  Summary of results for states from CDC data (cases) 

Specification MAD SSD  

Subset Conforming Nonconforming Conforming Nonconforming 

ROM > 3 10 12 20 2 

ROM < 3 12 18 25 5 

Total 22 30 45 7 

MAD nonconformity: MAD > 0.015. SSD nonconformity: SSD > 100. Full data are contained in supple-
mentary materials.  

However, when combining all states and analyzing the US as a whole, leading to  
𝑁 = 42,889 and ROM = 3.879, the results show very close conformity with Benford’s 
Law (MAD = 0.002, SSD = 0.608). 

3.3. County level data     

Finally, we consider the NYT county-level data, covering a period up to March 
2023. This allows for data from each county in a state to be pooled together, resulting 
in substantially larger sample sizes for each state of well over 𝑁 > 1,000, with 𝑁 > 10,000 
for the vast majority of states. All states also have full coverage of first digits in the lowest 
order of magnitude, meaning that any non-conformity is not due to a lack of coverage 
of digits in the lowest order of magnitude (Goodman, 2023). The data is provided as  
a cumulative daily tally of all cases and deaths, by county.  

3.3.1. Couty level data – deaths 

Table 2:  Summary of results for states from NYT data (cumulative daily deaths, by county) 

Specification MAD SSD  

Subset Conforming Nonconforming Conforming Nonconforming 

ROM > 3 23 8 28 3 

ROM < 3 7 12 13 6 

Total 30 20 41 9 

MAD nonconformity: MAD > 0.015. SSD nonconformity: SSD > 100. Full data is contained in supple-
mentary materials.  

Table 2 summarizes the results for cumulative daily deaths by county, analyzed at 
the state level (i.e. each county’s daily figure is treated as a separate observation, and 
combined with other county-day observations within the state to create the total 
dataset). Thirty-one states show a ROM of over 3. Of these, just 3 states show noncon-
formity on SSD and MAD (Connecticut, Massachusetts and Hawaii), with 5 further 
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states (Nevada, Oregon, Louisiana, Ohio and Kansas) showing nonconformity on 
MAD only. Of note, Connecticut, Massachusetts, and Hawaii are the three smallest 
states by N in this group. 

For completeness, we also review the 19 states with a ROM below 3. Of these, 
6 show non-conformity on SSD and MAD, whilst a further 6 show nonconformity on 
MAD only. Notably, just one state (Kentucky) shows close conformity on MAD (none 
do so on SSD) - interestingly, it has the second highest N of this group.  

Notably, the US as a whole (𝑁 = 3,162,163, ROM = 3.436) shows strong conformity 
with Benford’s Law (MAD = 0.003, close conformity; SSD = 2.35, acceptable). 

Another option for analyzing this information is to aggregate the daily county-level 
observations into a single, state-level observation. That is, for each given date, we can 
sum all observations across every county in each state, to get a single figure for 
cumulative deaths by state. This does reduce the overall sample size for each state, but 
each state still has N > 1,000. Strikingly, every single state shows nonconformity on 
MAD and SSD using this analysis, suggesting that this approach may not be suitable. 
However, once again, the US as a whole (𝑁 = 54,976, ROM = 4.052) shows acceptable 
conformity (MAD = 0.0197, SSD = 16.97).  

Alternatively, instead of cumulative deaths, we can analyze new daily deaths, again 
using individual county-level and then aggregated state-level data. Perhaps 
unsurprisingly, county-level new death data does not show conformity for any states - 
this is to be expected, however, as despite most states have sizeable N, they all have 
limited ROMs. Not a single state had a ROM over 3 (few states even had a raw OOM of 
over 3), and several states barely covered even a single order of magnitude. Hence  
in this situation, it may be appropriate to aggregate county-level data to state level,  
as it will increase the ROM for most states, even though it will reduce the N 
substantially.  

Table 3:  Summary of results for states from New York Times data (new daily deaths, aggregated) 

Specification 
MAD SSD  

Conforming Nonconforming Conforming Nonconforming 

All states 28 22 44 6 

MAD nonconformity: MAD > 0.015. SSD nonconformity: SSD > 100. Full data is contained in supple-
mentary materials.  

Surprisingly, despite this leading to N < 1,000 for nearly every state, and no state 
having a ROM over 3, there was a moderate degree of conformity (Table 3). It should 
be noted that the ROMs for states were generally higher in aggregated new deaths 
scenario, as compared to county-level new deaths, which may have contributed to this 
result.  
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3.3.2. Cases 

For cumulative cases, all states have very high Ns and high ROMs. This analysis 
shows just 2 states with a non-conforming SSD for cases – Connecticut and Hawaii, 
although Delaware is also very close to the threshold (Table 4). Notably, these three 
states represent the three of the four smallest by N, suggesting that again a very large 
sample size can be required to find a high degree of compliance with Benford’s Law. 
Under MAD, these three states are also non-conforming, along with a further 8 - Rhode 
Island, New Hampshire, Vermont, Arizona, Massachusetts, Nevada, New Jersey, and 
Iowa. However, 10 of these states are in the bottom 11 by N, again suggesting that even 
large Ns may not always show conformity. The outlier is Iowa. One potential 
explanation for Iowa’s nonconformity is the fact that they are a particularly rural state, 
with a large number of sparsely populated counties. Hence, these individual counties 
are likely to have a large number of relatively small numbers of cases, leading to fairly 
stable cumulative case counts and potentially causing non-compliance with Benford's 
Law. 

Table 4:  Summary of results for states from New York Times data (cumulative daily cases, county-
level) 

Specification 
MAD SSD  

Conforming Nonconforming Conforming Nonconforming 

All states 39 11 48 2 

MAD nonconformity: MAD > 0.015. SSD nonconformity: SSD > 100. Full data is contained in supple-
mentary materials.  

As with cumulative deaths above, we also try aggregating cumulative case data at 
the county-level to generate daily state-level observations. Strikingly, once again every 
single state shows nonconformity, despite all states having N > 1,000 and ROM of well 
over 3 (most are well over 3.5). However, despite this, the US as a whole (𝑁 = 55,876, 
ROM = 5.82) shows acceptable conformity with Benford’s Law (MAD = 0.0063, SSD = 
6.244). 

Table 5:  Summary of results for states from NYT data (new daily cases, by county) 

Specification MAD SSD  

Subset Conforming Nonconforming Conforming Nonconforming 

ROM > 3 14 1 15 0 

ROM < 3 27 8 33 2 

Total 41 9 48 2 

MAD nonconformity: MAD > 0.015. SSD nonconformity: SSD > 100. Full data is contained in supple-
mentary materials.  
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When considering new cases, 15 states have a ROM above 3, with all showing 
conformity on SSD and just one (Texas) showing nonconformity on MAD (Table 5). 
Even states with a ROM below 3 show fairly high levels of conformity - just two states 
show nonconformity on SSD, and 8 on MAD. And, as with other results, the US as  
a whole (𝑁 = 1,764,406, ROM = 2.914) shows acceptable conformity (MAD = 0.0105. 
SSD = 19.39).  

Finally, new cases can also be aggregated at the state level. In line with most of the 
other results, states generally have greater nonconformity when considering aggregated 
data, as compared to when county-level data remains disaggregated (Table 6).  

Table 6:  Summary of results for states from NYT data (new cases, aggregated) 

Specification MAD SSD  

Subset Conforming Nonconforming Conforming Nonconforming 

ROM > 3 15 17 32 2 

ROM < 3 11 7 16 2 

Total 26 24 48 2 

MAD nonconformity: MAD > 0.015. SSD nonconformity: SSD > 100. Full data is contained in supple-
mentary materials.  

4.  Discussion and Conclusion 

The results of this work show how different views of the same data can lead to very 
different results, and the importance of selecting an appropriate sample for analysis of 
conformity with Benford’s Law. Based on the results, it seems that if data is available at 
different levels (e.g., state and national, or state and county), then the level of data below 
the level of interest should be used if it provides sufficient orders of magnitude (ideally 
3, but it is possible to show conformity below this). That is, state level data should be 
used to calculate national level results, and county level data should be used to calculate 
state level results. Data should not be aggregated and summed together to a higher level 
(for example, summing daily county-level observations to get a single state level 
observation for each day), unless absolutely necessary. In general, when each county-
day observation was treated as its own datapoint, most states showed more conformity 
with Benford’s Law. In contrast, when observations for counties were summed each day 
to produce a single, aggregated daily figure for states, conformity was much lower. 
Perhaps most strikingly, cumulative deaths and cumulative cases saw the majority of 
states showing conformity when using county-level data, but literally every state 
showed nonconformity on both cases and deaths when analyzing aggregate data 
(despite the US as a whole also showing conformity).  

However, there was one exception to this, namely the NYT data on new deaths.  
In this case, county level data does not cover sufficient orders of magnitude – as such, 
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aggregating several observations together can make sense and may in fact be necessary. 
When county-day observations for new deaths (which spanned fewer orders of 
magnitude than new cases, or cumulative cases/deaths) were treated as individual data 
points, no state showed conformity. This was expected, as no state had a ROM of over 
3 and in fact several had a ROM below 1. However, when new deaths per county were 
summed to provide a single, daily state figure, many states actually showed some degree 
of conformity, despite nearly every state having N < 1,000 and ROM < 3.  

Overall, this highlights the importance of large sample sizes and orders of 
magnitude, particularly the ROM measure. Some datasets with very large Ns (e.g., new 
daily deaths at the county level) but low orders of magnitude show high nonconformity, 
whilst others with high ROMs but relatively lower Ns (e.g., cumulative cases, aggregated 
to the state level) also showed nonconformity. Whilst there were some cases where 
despite a low ROM and a low N, some states did show conformity with Benford’s Law, 
these were in the minority. Indeed, just because some data with low N and limited ROM 
complies with Benford’s Law does not mean that we should expect all data to comply 
(Goodman, 2023). Of note, whenever states were divided into groups based on a ROM 
above or below 3, there was typically greater conformity in the group with ROMs above 
3, suggesting that the thresholds for N and ROM, whilst important, are more in the 
nature of guidelines than hard and fast rules.  

This highlights the importance of a comparative approach, using multiple, similar 
datasets to test conformity, and using the most appropriate level of analysis where 
multiple levels are available.  The results of this work confirm more recent work that 
has found broad conformity with Benford’s Law for the US as a whole and for most 
states (Rocha Filho et al., 2023). It fits with the broader trend of early indications of 
non-conformity, but later data showing clear conformity (Farhadi & Lahooti, 2021, 
2022a). It reinforces the need to ensure that data has the potential to actually be 
compliant with Benford’s Law, before testing for compliance (Ausloos et al., 2021), and 
indeed helps to identify why earlier analysis was more prone to finding deviations from 
Benford’s Law. It can be tempting to try and find sources of non-compliance, and forget 
the underlying prerequisites of Benford’s Law. It is likely that a thorough review of 
previous work of Benford’s Law, particularly from early in the COVID-19 pandemic 
but potentially in a range of fields, would likely find many such examples of its 
application to datasets that were not at all suitable, resulting in spurious claims of 
nonconformity. 
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